EL CONCRETO
VELOCIDAD DE SECADO DEL CONCRETO
El cocreto ni endurece ni se cura con el secado. El concreto (o de manera precisa, el cemento en el contenido) requiere de humedad para hidratarse y endurecer. El secado del concreto unicamente esta relacionado con la hidratación y el endurecimiente de manera indirecta. Al secarse el concreto, deja de ganar resistencia; el hecho de que este seco, no es indicación de que haya experimentado la suficiente hidratación para lograr las propiedades fisicas deseadas.
El conocimiento de la velocidad de secado es útil para comprender las propiedades o la condición física del concreto. Por ejemplo, tal como se menciono, el concreto debe seguir reteniendo suficiente humedad durante todo el perido de curado para que el cemento pueda hidratarse. El concreto recién colado tiene agua abundante, pero a medida de que el secado progresa desde la superficie hacia el interior, el aumento de resistencia continuara a cada profundidad únicamente mientras la humedad relativa en ese punto se mantenga por encima del 80%.
La superficie de un piso de concreto que no a tenido suficiente curado húmedo es una muestra común. Debido a que se seca rápidamente, el concreto de la superficie es débil y se produce descascaramiento en partículas finas provocado por el transito. Asimismo, el concreto se contrae al, secarse, del mismo modo que lo hacen la madera, papel y la arcilla (aunque no tanto). La contraccion por secado es una causa fundamental de agrietamiento, y le ancho de las grietas es función del grado del secado.
En tanto que la superficie del concreto se seca rápidamente, al concreto en el interior le lleva mucho mas tiempo secarse.
Note que luego de 114 días de secado natural el concreto aun se encuentra muy húmedo en su interior y que se requiere de 850 días para que la humedad relativa en el concreto descendiera al 50%.
El contenido de humedad en elementos delgados de concreto que han sido secado al aire con una humedad relativa de 50% a 90% durante varios meses es de 1% a 2% en peso del concreto, del contenido original de agua, de las condiciones de secado y del tamaño del elemento de concreto.
El tamaño y la forma de un miembro de concreto mantiene una relación importante como la velocidad de secado. Los elementos del concreto de gra area superficial en relacion a su volumen (tales como losas de piso) se secan con mucho mayor rapidez que los grandes volumenes de concreto con ares superficiales relativamente pequeñas (tales como los estribos de puentes).
Muchas otras propiedades del concreto endurecido se ven también afectadas por su contenido de humedad; en ellas incluye la elasticidad, flujo plástico, valor de aislamiento, resistencia al fuego, resistencia al desgaste, conductividad eléctrica, durabilidad.
RESISTENCIA A CONGELACION Y DESHIELO
Del concreto utilizado en estructuras y pavimentos, se espera que tenga una vida larga y un mantenimiento bajo. Debe tener buena durabilidad para resistir condiciones de exposición anticipadas. El factor de intemperismo mas destructivo es la congelación y el deshielo mientras el concreto se encuentra húmedo, particularmente cuando se encuentra con la presencia de agentes químicos descongelantes. El deterioro provocado por el congelamiento del agua en la pasta, en las partículas del agregado o en ambos.
Con la inclusión de aire es sumamente resistente a este deterioro. Durante el congelamiento, el agua se desplaza por la formación de hielo en la pasta se acomoda de tal forma que no resulta perjudicial; las burbujas de aire en la pasta suministran cámaras donde se introduce el agua y asi se alivia la presión hidráulica generada.
Cuando la congelación ocurre en un concreto que contenga agregado saturado, se pueden generar presiones hidráulicas nocivas dentro del agregado. El agua desplazada desde las partículas del agregado durante la formación del hielo no puede escapar lo suficientemente rápido hacia la pasta circundante para aliviar la presión. Sin embargo, bajo casi todas las condiciones de exposición, una pasta de buena calidad (de baja relación Agua - Cemento) evitara que la mayor parte de las partículas de agregado se saturen. También, si la pasta tiene aire incluido, acomodara las pequeñas cantidades de agua en exceso que pudieran ser expulsadas por los agregados, protegiendo así al concreto contra daños por congelación y deshielo.
(1): El concreto con aire incluido es mucho mas resistente a los ciclos de congelación y deshielo que el concreto sin aire incluido, (2): el concreto con una relación Agua - Cemento baja es mas durable que el concreto con una relación Agua - Cemento alta, (3) un periodo de secado antes de la exposición a la congelación y el deshielo beneficia sustancialmente la resistencia a la congelación y deshielo beneficia sustancialmente la resistencia a la congelación y el deshielo del concreto con aire incluido , pero no beneficia de manera significativa al concreto sin aire incluido. El concreto con aire incluido con una relación Agua - Cemento baja y con un contenido de aire de 4% a 8% soportara un gran numero de ciclos de congelación y deshielo sin presentar fallas.
La durabilidad a la congelación y deshielo se puede determinar por el procedimiento de ensaye de laboratorio ASTM C 666, ” Estándar Test Method for Resistance of Concrete to Rapid Freezing and Thawing”. A partir de la prueba se calcula un factor de durabilidad que refleja el numero de ciclos de congelación y deshielo requeridos para producir una cierta cantidad de deterioro. La resistencia al descascaramiento provocado por compuestos descongelantes se puede determinar por medio del procedimiento ASTC 672 “Estándar Test Method for Scaling Resistance of Concrete Surface Exposed to Deicing Chemicals”.
Del concreto utilizado en estructuras y pavimentos, se espera que tenga una vida larga y un mantenimiento bajo. Debe tener buena durabilidad para resistir condiciones de exposición anticipadas. El factor de intemperismo mas destructivo es la congelación y el deshielo mientras el concreto se encuentra húmedo, particularmente cuando se encuentra con la presencia de agentes químicos descongelantes. El deterioro provocado por el congelamiento del agua en la pasta, en las partículas del agregado o en ambos.
Con la inclusión de aire es sumamente resistente a este deterioro. Durante el congelamiento, el agua se desplaza por la formación de hielo en la pasta se acomoda de tal forma que no resulta perjudicial; las burbujas de aire en la pasta suministran cámaras donde se introduce el agua y asi se alivia la presión hidráulica generada.
Cuando la congelación ocurre en un concreto que contenga agregado saturado, se pueden generar presiones hidráulicas nocivas dentro del agregado. El agua desplazada desde las partículas del agregado durante la formación del hielo no puede escapar lo suficientemente rápido hacia la pasta circundante para aliviar la presión. Sin embargo, bajo casi todas las condiciones de exposición, una pasta de buena calidad (de baja relación Agua - Cemento) evitara que la mayor parte de las partículas de agregado se saturen. También, si la pasta tiene aire incluido, acomodara las pequeñas cantidades de agua en exceso que pudieran ser expulsadas por los agregados, protegiendo así al concreto contra daños por congelación y deshielo.
(1): El concreto con aire incluido es mucho mas resistente a los ciclos de congelación y deshielo que el concreto sin aire incluido, (2): el concreto con una relación Agua - Cemento baja es mas durable que el concreto con una relación Agua - Cemento alta, (3) un periodo de secado antes de la exposición a la congelación y el deshielo beneficia sustancialmente la resistencia a la congelación y deshielo beneficia sustancialmente la resistencia a la congelación y el deshielo del concreto con aire incluido , pero no beneficia de manera significativa al concreto sin aire incluido. El concreto con aire incluido con una relación Agua - Cemento baja y con un contenido de aire de 4% a 8% soportara un gran numero de ciclos de congelación y deshielo sin presentar fallas.
La durabilidad a la congelación y deshielo se puede determinar por el procedimiento de ensaye de laboratorio ASTM C 666, ” Estándar Test Method for Resistance of Concrete to Rapid Freezing and Thawing”. A partir de la prueba se calcula un factor de durabilidad que refleja el numero de ciclos de congelación y deshielo requeridos para producir una cierta cantidad de deterioro. La resistencia al descascaramiento provocado por compuestos descongelantes se puede determinar por medio del procedimiento ASTC 672 “Estándar Test Method for Scaling Resistance of Concrete Surface Exposed to Deicing Chemicals”.
CONTROL DE AGRIETAMIENTO
Las dos causas básicas por las que se producen grietas en el concreto son (1) esfuerzos debidos a cargas aplicadas y (2) esfuerzos debidos a contracción por secado o a cambios de temperatura en condiciones de restricción
La contracción por secado es una propiedad inherente e inevitable del concreto, por lo que se utiliza acero de refuerzo colocado en una posicion adecuada para reducir los anchos de grieta, o bien juntas que predetermine y controlen la ubicación de las grietas. Los esfuerzos provocados por las fluctuaciones de temperatura pueden causar agrietamientos, especialmente en edades tempranas.
Las grietas por contracción del concreto ocurren debido a restricciones. Si no existe una causa que impida el movimiento del concreto y ocurren contracciones, el concreto no se agrieta. Las restricciones pueden ser provocadas por causas diversas. La contracción por de secado siempre es mayor cerca de la superficie del concreto; las porciones húmedas interiores restringen al concreto en las cercanías de la superficie con lo que se pueden producir agrietamientos. Otras causas de restricción son el acero de refuerzo embebido e el concreto, las partes de una estructura interconectadas entre si, y la fricción de la subrasante sobre la cual va colocado el concreto.
Las juntas son el método mas efectivo para controlar agrietamientos. Si una extensión considerable de concreto (una pared, losa o pavimento) no contiene juntas convenientemente espaciadas que alivien la contracción por secado y por temperatura, el concreto se agrietara de manera aleatoria.
Las juntas de control se ranuran, se Forman o se aserran en banquetas, calzadas, pavimentos, pisos y muros de modo que las grietas ocurran en esas juntas y no aleatoriamente. Las juntas de control permiten movimientos en el plano de una losa o de un muro. Se desarrollan aproximadamente a un cuarto del espesor del concreto.
Las juntas de separación aíslan a una losa de otros elementos e otra estructura y le permiten tanto movimiento horizontales como verticales. Se colocan en las uniones de pisos con muros, columnas, bases y otros puntos donde pudieran ocurrir restricciones. Se desarrollan en todo el espesor de la losa e incluyen un relleno premoldeado para la junta.
Las juntas de construcción se colocan en los lugares donde ha concluido la jornada de trabajo; separan áreas de concreto colocado en distintos momentos. En las losas para pavimentos, las juntas de construcción comúnmente se alinean con las juntas de control o de separación, y funcionan también como estas ultimas.
Las dos causas básicas por las que se producen grietas en el concreto son (1) esfuerzos debidos a cargas aplicadas y (2) esfuerzos debidos a contracción por secado o a cambios de temperatura en condiciones de restricción
La contracción por secado es una propiedad inherente e inevitable del concreto, por lo que se utiliza acero de refuerzo colocado en una posicion adecuada para reducir los anchos de grieta, o bien juntas que predetermine y controlen la ubicación de las grietas. Los esfuerzos provocados por las fluctuaciones de temperatura pueden causar agrietamientos, especialmente en edades tempranas.
Las grietas por contracción del concreto ocurren debido a restricciones. Si no existe una causa que impida el movimiento del concreto y ocurren contracciones, el concreto no se agrieta. Las restricciones pueden ser provocadas por causas diversas. La contracción por de secado siempre es mayor cerca de la superficie del concreto; las porciones húmedas interiores restringen al concreto en las cercanías de la superficie con lo que se pueden producir agrietamientos. Otras causas de restricción son el acero de refuerzo embebido e el concreto, las partes de una estructura interconectadas entre si, y la fricción de la subrasante sobre la cual va colocado el concreto.
Las juntas son el método mas efectivo para controlar agrietamientos. Si una extensión considerable de concreto (una pared, losa o pavimento) no contiene juntas convenientemente espaciadas que alivien la contracción por secado y por temperatura, el concreto se agrietara de manera aleatoria.
Las juntas de control se ranuran, se Forman o se aserran en banquetas, calzadas, pavimentos, pisos y muros de modo que las grietas ocurran en esas juntas y no aleatoriamente. Las juntas de control permiten movimientos en el plano de una losa o de un muro. Se desarrollan aproximadamente a un cuarto del espesor del concreto.
Las juntas de separación aíslan a una losa de otros elementos e otra estructura y le permiten tanto movimiento horizontales como verticales. Se colocan en las uniones de pisos con muros, columnas, bases y otros puntos donde pudieran ocurrir restricciones. Se desarrollan en todo el espesor de la losa e incluyen un relleno premoldeado para la junta.
Las juntas de construcción se colocan en los lugares donde ha concluido la jornada de trabajo; separan áreas de concreto colocado en distintos momentos. En las losas para pavimentos, las juntas de construcción comúnmente se alinean con las juntas de control o de separación, y funcionan también como estas ultimas.
AGREGADO PARA CONCRETO
Los agregados finos y gruesos ocupan comúnmente de 60% a 75% del volumen del concreto (70% a 85% en peso), e influyen notablemente en las propiedades del concreto recién mezclado y endurecido, en las proporciones de la mezcla, y en la economía. Los agregados finos comúnmente consisten en arena natural o piedra triturada siendo la mayoría de sus partículas menores que 5mm. Los agregados gruesos consisten en una grava o una combinación de grava o agregado triturado cuyas partículas sean predominantemente mayores que 5mm y generalmente entre 9.5 mm y 38mm. Algunos depósitos naturales de agregado, a veces llamados gravas de mina, rió, lago o lecho marino. El agregado triturado se produce triturando roca de cantera, piedra bola, guijarros, o grava de gran tamaño. La escoria de alto horno enfriada al aire y triturada también se utiliza como agregado grueso o fino.
1): Un material es una sustancia sólida natural que tiene estructura interna ordenada y una composición química que varia dentro de los limites muy estrechos. Las rocas (que dependiendo de su origen se pueden clasificar como ígneas, sedimentarias o metamorficas), se componen generalmente de varios materiales. Por ejemplo, el granito contiene cuarzo, feldespato, mica y otro cuantos minerales; la mayor parte de las calizas consisten en calcita, dolomita y pequeñas cantidades de cuarzo, feldespato y arcilla. El intemperismo y la erosión de las rocas producen partículas de piedra, grava, arena, limo, y arcilla.
El concreto reciclado, o concreto de desperdicio triturado, es una fuente factible de agregados y una realidad económica donde escaseen agregados de calidad.
Los agregados de calidad deben cumplir ciertas reglas para darles un uso ingenieril optimo: deben consistir en partículas durables, limpias, duras, resistentes y libres de productos químicos absorbidos, recubrimientos de arcilla y otros materiales finos que pudieran afectar la hidratación y la adherencia la pasta del cemento. Las partículas de agregado que sean desmenuzables o susceptibles de resquebrajarse son indeseables. Los agregado que contengan cantidades apreciables de esquistos o de otras rocas esquistosas, de materiales suaves y porosos, y ciertos tipos de horsteno deberán evitarse en especial, puesto que tiene baja resistencia al intemperismo y pueden ser causa de defectos en la superficie tales como erupciones.
Los agregados finos y gruesos ocupan comúnmente de 60% a 75% del volumen del concreto (70% a 85% en peso), e influyen notablemente en las propiedades del concreto recién mezclado y endurecido, en las proporciones de la mezcla, y en la economía. Los agregados finos comúnmente consisten en arena natural o piedra triturada siendo la mayoría de sus partículas menores que 5mm. Los agregados gruesos consisten en una grava o una combinación de grava o agregado triturado cuyas partículas sean predominantemente mayores que 5mm y generalmente entre 9.5 mm y 38mm. Algunos depósitos naturales de agregado, a veces llamados gravas de mina, rió, lago o lecho marino. El agregado triturado se produce triturando roca de cantera, piedra bola, guijarros, o grava de gran tamaño. La escoria de alto horno enfriada al aire y triturada también se utiliza como agregado grueso o fino.
1): Un material es una sustancia sólida natural que tiene estructura interna ordenada y una composición química que varia dentro de los limites muy estrechos. Las rocas (que dependiendo de su origen se pueden clasificar como ígneas, sedimentarias o metamorficas), se componen generalmente de varios materiales. Por ejemplo, el granito contiene cuarzo, feldespato, mica y otro cuantos minerales; la mayor parte de las calizas consisten en calcita, dolomita y pequeñas cantidades de cuarzo, feldespato y arcilla. El intemperismo y la erosión de las rocas producen partículas de piedra, grava, arena, limo, y arcilla.
El concreto reciclado, o concreto de desperdicio triturado, es una fuente factible de agregados y una realidad económica donde escaseen agregados de calidad.
Los agregados de calidad deben cumplir ciertas reglas para darles un uso ingenieril optimo: deben consistir en partículas durables, limpias, duras, resistentes y libres de productos químicos absorbidos, recubrimientos de arcilla y otros materiales finos que pudieran afectar la hidratación y la adherencia la pasta del cemento. Las partículas de agregado que sean desmenuzables o susceptibles de resquebrajarse son indeseables. Los agregado que contengan cantidades apreciables de esquistos o de otras rocas esquistosas, de materiales suaves y porosos, y ciertos tipos de horsteno deberán evitarse en especial, puesto que tiene baja resistencia al intemperismo y pueden ser causa de defectos en la superficie tales como erupciones.
Enlace bibliografico:
No hay comentarios:
Publicar un comentario